Abstract

Dynamic aeroengine model plays a key role in the design of engine control systems. Moreover, modelling of the engine using performance simulations is an important step in the design process in order to reduce costs, decrease risks and shortening development period. Parameters such as engine spool speeds, vibration, oil temperature, exhaust gas temperature, and fuel flow are often used to estimate performance in gas turbine engines. In this study, two artificial neural network methods were used for the prediction, under transient operations, of one of the most important engine parameters, the Exhaust Gas Temperature (EGT). The data used for model training are time series datasets of several different flight missions, which have been created using a gas path analysis, and that allow to simulate the engine transient behaviour. The study faces the challenge of setting up a robust and reliable Nonlinear Input-Output (NIO) and a Nonlinear AutoRegressive with eXog nous inputs (NARX) models, by means of a good selection of training. At the end of the study, two network that predicts the engine EGT in transient operations with the smallest error have been identified.

Highlights

Read more

Summary

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.