Abstract
The presented study concerns with evaluating the dynamic performance of an isotropic sinusoidal brushless motor drive while utilizing different sensorless schemes. Three estimation algorithms are considered: the first depends on extracting the speed and position via comparing two values of motor's voltage in two co-ordinate systems; the second extracts the speed and position signal via comparing two different values of motor's current defined in two co-ordinates; while the third depends on estimating the motor's flux and use it to get the speed and position. The vector control is adopted to manage the drive dynamics. The detailed mathematical derivations for all system components are presented to facilitate the performance analysis. The theoretical base of each sensorless scheme is also described in detail. The target of the provided comparative analysis is to outline the weakness and strength points of each adopted sensorless schemes while estimating the speed and rotor position for a wide operating speed range. The judgment is measured in terms of the speed and rotor position estimation errors and the dynamic response as well. The performance evaluation process is carried out using MATLAB/Simulink software in which all system parts are simulated using their mathematical models. The findings from the study state that when it comes to dynamic speed behaviour, the voltage-based sensorless technique dominates, while the current-based sensorless approach gives stability in speed estimate priority. Alternatively, the third adopted sensorless scheme offers an acceptable high-speed performance and respectable performance at lower speeds. Statistically, it is found that the voltage-based estimation technique gives respectively lower speed and position estimation errors with percentages of 35% and 10% lower than their values under the current-based estimation technique, and with percentages of 35% and 30% lower than their values under the third adopted scheme.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have