Abstract

In this paper, a class of nonlinear systems is considered, where the nominal system representation is allowed to be non-minimum phase. A sliding surface is proposed which is a function of the measured system output and an estimated state. A linear coordinate transformation is introduced so that the stability analysis of the reduced order sliding mode dynamics can be conveniently performed. A robust output feedback sliding mode control (OFSMC) is then designed to drive the system states to the sliding surface in finite time and maintain a sliding motion thereafter. A simulation example is used to demonstrate the effectiveness of the proposed method and the method is successfully applied to an inverted pendulum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.