Abstract

Under dynamic conditions, the dynamic force between the suspended equipment and the car body is substantially increased. This increase not only affects the ride comfort but also substantially raises the likelihood of fatigue damage to the suspended equipment. A multiobjective analytical target cascading (ATC) optimization is proposed to improve the ride comfort of high-speed trains and reduce the vibration of the suspended equipment. A mathematical simulation model of the vehicle equipment system is established, and the acceleration frequency-response function expression of the car body and the suspension system is obtained. The comfort index of the car body and the acceleration root mean square (RMS) of the suspended equipment are calculated by combining the German vertical irregular track spectrum and the comfort filter function. Meanwhile, the ATC method is used to optimize the car body comfort index and the acceleration RMS of the underframe suspended equipment. Then, the availability of the optimization method is evaluated via numerical simulation. Compared with the original suspension scheme of the underframe equipment, when the running speed of the vehicle is 300 km/h, the RMS value of the vibrational acceleration of the underframe equipment after optimization decreases by 19.9 %, and the ride comfort indexes at the car body center and above the front and rear bogies are improved by 6.4 %, 0.1 %, and 1.1 %, respectively. Simulation results demonstrate that ATC optimization can improve the railway vehicle ride comfort and reduce the vibration of the suspended equipment. This paper provides a new approach to the suspension parameter design of equipment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call