Abstract

This study is concerned with the design of dynamic observer-based robust controller that also facilitates the acquisition of information used for fault detection (FD) purpose in feedback control systems. Through introducing a weighting matrix, the combination of observer states is utilised to generate a residual signal to detect faults. The first technical contribution is to construct a new linearising change-of-variables that is able to convert the dynamic observer-based controller design problem into linear matrix inequality-based optimisation problem. The second one is to show that the proposed dynamic observer-based controller can achieve a better H∞ performance compared with the existing static (Luenberger) observer-based controller design approaches. Finally, via the simple residual structure, a convex fault detector design condition with some parameter matrices fixed is developed for guaranteeing the H− performance used to measure the fault sensitivity. An F-18 aircraft model is given to show the satisfactory FD performance and control performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.