Abstract

Underwater autonomous manipulation is a challenging task, which not only includes a complicated multibody dynamic and hydrodynamic process, but also involves the limited observation environment. This study systematically investigates the dynamic modeling and control of the underwater vehicle-manipulator multibody system. The dynamic model of underwater vehicle-manipulator system has been established on the basis of the Newton–Euler recursive algorithm. On the basis of dynamic analysis, a motion planning optimization algorithm has been designed in order to realize the coordinate motions between AUV and manipulator through reducing the restoring forces and saving the electric power. On the other hand, a disturbance force observer including the coupling and restoring forces has been designed. An observer-based dynamic control scheme has been established in combination with kinematic and dynamic controller. Furthermore, from the simulations, although the disturbance forces such as restoring and coupling forces are time varying and great, the observer-based dynamic coordinate controller can maintain the AUV attitude stable during the manipulator swing and pitch motions. During the precise manipulation simulation, the stable AUV attitude and minimization of disturbance forces have been realized through combination of optimal motion planning and the observer-based dynamic coordinate controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call