Abstract
The interaction between nuclear and electronic spins is of interest for structural characterization of biomolecules and biomedical imaging based on nuclear magnetic resonance. The polarization of the nuclear spins can be increased significantly if the electron spin polarization is kept out of equilibrium. We employ semiclassical relaxation theory to analyze the electronic polarization of the two-spin system characteristic of nitroxide radicals. Atomistic molecular dynamics simulations of the nitroxide TEMPOL in water are performed to account for the effects of tumbling and spin-rotation coupling on the spin-spin and spin-lattice relaxation times. Concentration effects on the electron saturation are introduced by allowing for Heisenberg spin exchange between two nitroxides. Polarization enhancement profiles, calculated from the computed saturation, are directly compared with liquid-state dynamic nuclear polarization experiments conducted at 260 GHz/400 MHz. The contribution of the separate hyperfine lines to the saturation can be easily disentangled using the developed formalism.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have