Abstract
On-chip optical nonreciprocal devices are vital components for integrated photonic systems and scalable quantum information processing. Nonlinear optical isolators and circulators have attracted considerable attention because of their fundamental interest and their important advantages in integrated photonic circuits. However, optical nonreciprocal devices based on Kerr or Kerr-like nonlinearity are subject to dynamical reciprocity when the forward and backward signals coexist simultaneously in a nonlinear system. Here, we theoretically propose a method for realizing on-chip nonlinear isolators and circulators with dynamic nonreciprocity. Dynamic nonreciprocity is achieved via the chiral modulation on the resonance frequency due to coexisting self- and cross-Kerr nonlinearities in an optical ring resonator. This work showing dynamic nonreciprocity with a Kerr nonlinear resonator can be an essential step toward integrated optical isolation.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have