Abstract
The application of neural network techniques to the control of nonlinear dynamical systems has been the subject of substantial interest and research in recent years. In our own work, we have concentrated on extending the dynamic gradient formalism as established by Narendra and Parthasarathy (1990, 1991), and on employing it for applications in the control of nonlinear systems, with specific emphasis on automotive subsystems. The results we have reported to date, however, have been based exclusively upon simulation studies. In this paper, we establish that dynamic gradient training methods can be successfully used for synthesizing neural network controllers directly on instances of real systems. In particular we describe the application of dynamic gradient methods for training a time-lagged recurrent neural network feedback controller for the problem of engine idle speed control on an actual vehicle, discuss hardware and software issues, and provide representative experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.