Abstract
The goal of this paper is to introduce a new neural network architecture called Sigmoid Diagonal Recurrent Neural Network (SDRNN) to be used in the adaptive control of nonlinear dynamical systems. This is done by adding a sigmoid weight victor in the hidden layer neurons to adapt of the shape of the sigmoid function making their outputs not restricted to the sigmoid function output. Also, we introduce a dynamic back propagation learning algorithm to train the new proposed network parameters. The simulation results showed that the (SDRNN) is more efficient and accurate than the DRNN in both the identification and adaptive control of nonlinear dynamical systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.