Abstract

Starting from Shannon's definition of dynamic entropy, we propose a theory to describe the rare-event-determined dynamic states in condensed matter and their transitions and apply it to high-pressure ice VII. A dynamic intensive quantity named dynamic field, rather than the conventional thermodynamic intensive quantities such as temperature and pressure, is taken as the controlling variable. The dynamic entropy versus dynamic field curve demonstrates two dynamic states in the stability region of ice VII and dynamic ice VII. Their microscopic differences were assigned to the dynamic patterns of proton transfer. This study puts a similar dynamical theory used in earlier studies of glass models on a simpler and more fundamental basis, which could be applied to describe the dynamic states of more realistic condensed matter systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.