Abstract

The main peach-producing area in Shandong is an important peach fruit-producing area in China. Understanding the nutritional properties of the soil in peach orchards helps us to understand the evolution of soil properties and adjust management methods in a timely manner. This study focuses on 52 peach orchards in the main peach-producing area in Shandong as the research object. The spatiotemporal changes in soil traits and their influential factors were studied in depth, and the changes in soil fertility were effectively evaluated. The results showed that the input of nitrogen, phosphorus and potassium from organic fertilizer in 2021 was significantly higher than that in 2011, while the input of fertilizer in 2011 was significantly higher than that in 2021. Compared with traditional parks, both organic fertilizer inputs and chemical fertilizer inputs in demonstration parks showed a significant downwards trend. There was no significant change in pH values between 2011 and 2021. In 2021, the soil organic matter (SOM) contents of the 0-20 cm and 20-40 cm layers were 24.17 g·kg-1 and 23.38 g·kg-1, respectively, an increase of 29.3% and 78.47% over the values measured in 2011. Compared with 2011, the content of soil alkaloid nitrogen (AN) decreased significantly in 2021, and the contents of available phosphorus (AP) and available potassium (AK) in the soil increased significantly. According to the calculation results of the comprehensive fertility index (IFI) value, we found that in 2021, compared with 2011, the quality of soil fertility improved, most of which was at the medium and high levels. The research results show that the fertilizer-saving and synergistic approach in peach orchards in China significantly improved the soil nutrition. In the future, research on suitable comprehensive technologies should be strengthened in the management of peach orchards.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.