Abstract

Fatty acids such as oleic and stearic acids having a long hydrocarbon chain are known to exist as dimers in their melt and even in a non-polar solvent. In their melt the dimers arrange longitudinally and alternately to form clusters which resemble a smectic liquid crystal. The clusters determine the liquid properties of the fatty acids such as density, viscosity and fluidity. Then, do the dimers of fatty acid having a moderate-length hydrocarbon chain construct such the clusters? In the present study the dynamic molecular behavior and assembly structure of octanoic acid in its melt and also in CCl4 solution have been investigated by the X-ray diffraction, near infrared spectroscopy, 1H-NMR chemical shift, self-diffusion coefficient and 13C-NMR spin-lattice relaxation time measurements. From these results it has been revealed that the clusters of octanoic acid exist in its melt and also in CCl4 and that the clusters in the melt disintegrate with an increase in temperature. The dissociation profile of dimers of octanoic acid into monomers in CCl4 also has been clarified.

Highlights

  • Fatty acids are used in many fields such as cosmetic, detergent, food and lubricant industries; they are characteristic and significant components of most lipids and play an important role in functions such as flexibility, fluidity and material transfer in biomembranes

  • Do the dimers of fatty acid having a moderate-length hydrocarbon chain construct such the clusters? In the present study the dynamic molecular behavior and assembly structure of octanoic acid in its melt and in CCl4 solution have been investigated by the X-ray diffraction, near infrared spectroscopy, 1H-NMR chemical shift, self-diffusion coefficient and 13C-NMR spin-lattice relaxation time measurements

  • Through the measurements of near-infrared spectroscopy (NIR) and vapor pressure osmosis it has been revealed that cis-9-octadecenoic acid (Iwahashi, Suzuki, Czarnecki and Ozaki, 1995 [1]) and several nfatty acids (C8-C11) (Iwahashi, Kasahara, Minami, Matsuzawa, Suzuki and Ozaki, 2002 [2]) in their liquid states exist as dimers even at 80 ̊C: the dimers are the units in intra- or intermolecular movements

Read more

Summary

Introduction

Fatty acids are used in many fields such as cosmetic, detergent, food and lubricant industries; they are characteristic and significant components of most lipids and play an important role in functions such as flexibility, fluidity and material transfer in biomembranes. The dynamic molecular aspects and the assembly structures of several fatty acids having 18 carbon atoms such as cis-6-octadecenoic, cis-9-octadecenoic, cis-11-octadecenoic, trans-9-octadecenoic, and octadecanoic acids in their pure liquids were studied at various constant temperatures (Iwahashi et al, 2000 [3]). The dimers of these fatty acids, which are stable even at high temperature, aggregate to form clusters possessing the structure of a quasi-smectic liquid crystal: The long-chained fatty acid dimers arrange longitudinally and alternately to make an interdigitated structure in the clusters. Do the dimers of fatty acid having a moderatelength hydrocarbon chain construct such the clusters in the melt or in a non-polar solvent? If so, are the clusters stable at high temperature or in a dilute solution? To solve these questions, we measured the X-ray diffraction, self-diffusion coefficient, 13C-NMR spin-lattice relaxation time, near-infrared (NIR) spectroscopy and 1H-NMR chemical shift for the samples of octanoic acid in its melt and in its CCl4 solution

Materials
Measurements
Aggregation Structure of Octanic Acid in Its Melt
Dissociation of Dimer Molecules of Octanoic Acid into Monomer Species
Intramolecular Movements of Octanoic Acid Molecule
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.