Abstract
One of the main mechanisms for driving down the cost of offshore wind energy is to install ever larger wind turbines in larger wind farms. At the same time, these turbines are placed further offshore in deeper waters. As a result, traditional monopile foundations are not always feasible and multimembered foundations, such as jackets and tripods are required. Typically, thousands of load cases need to be simulated for the design and certification of offshore wind turbines (OWTs). As models of such foundations are significantly larger than their monopile counterparts, model reduction is often applied to limit the computational costs. Additionally, the foundation design is generally done by a specialized company, which bases its design on the results of the load simulations. Hence, an accurate estimation of the stresses in load simulation is essential to predict the integrity and the lifetime of different designs. The effect on the load accuracy of both the model reduction as well as the postprocessing method used by foundation designers (FDs) are investigated in this paper. A case study is performed on a jacket-based wind turbine model to verify and quantify the findings. First, it is observed that the effect of the reduced foundation model on the wind turbine loads is negligible. However, both the reduction method and the postprocessing method applied by the FD have a large influence on the fatigue loading in the jacket. It is shown that the popular Guyan reduction results in significant errors on the fatigue damage and that a static postprocessing analysis leads to serious underestimations of the fatigue loads. Finally, an outlook is given into future developments in the field of load calculations for OWT foundation design.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have