Abstract

The Combined-Cycle Gas Turbine (CCGT) power plants are increasingly required to provide the service for balancing the load demand and power supply with the increase of the intermittent power generation from renewable energy sources. To ensure CCGT power plants to operate flexibly and efficiently, it is necessary to find the suitable strategy. This paper presents the feasibility of a CCGT power plant combined with the Thermal Energy Storage (TES) to improve the plant operation flexibility. The dynamic simulation models of a 420MW CCGT power plant and TES system are presented in this paper. The TES charging and discharging strategies are investigated. The simulation results show that TES charging or discharging processes provide the additional mechanisms for regulating the output power of the CCGT power plant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.