Abstract

Micro vibrations, produced by reaction flywheels, coolers, driving motors and other moving parts in spacecrafts, will result in jitters and performance degradation of sensitive optical payloads, such as laser communication platforms, space telescopes and staring cameras. In this paper, one hexapod platform with flexible ball joints is employed to suppress vibrations and steer the payload in 6-degree-of-freedom (DOF). At first, dynamic modeling of the flexible hexapod platform with two-stage hybrid isolation struts is derived. Then, a composite control strategy is proposed for vibration isolation and precision tracking. Finally, the simulation study is presented to validate the proposed control strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call