Abstract

This paper presents a numerical study of a Capillary Pumped Loop evaporator. A two-dimensional unsteady mathematical model of a flat evaporator is developed to simulate heat and mass transfer in unsaturated porous wick with phase change. The liquid–vapor phase change inside the porous wick is described by Langmuir's law. The governing equations are solved by the Finite Element Method. The results are presented then for a sintered nickel wick and methanol as a working fluid. The heat flux required to the transition from the all-liquid wick to the vapor–liquid wick is calculated. The dynamic and thermodynamic behavior of the working fluid in the capillary structure are discussed in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.