Abstract

Two-dimensional numerical model for the global evaporator of miniature flat plate capillary pumped loop (CPL) is developed to describe heat and mass transfer with phase change in the porous wick, liquid flow and heat transfer in the compensation cavity and heat transfer in the vapor grooves and metallic wall. The governing equations for different zones are solved as a conjugate problem. The side wall effect heat transfer limit is introduced to estimate the heat transport capability of evaporator. The influences of liquid subcooling, wick material, metallic wall material and non-uniform heat flux on the evaporator performance are discussed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.