Abstract

AbstractTest data generation in program testing is the process of identifying a set of test data which satisfies a given testing criterion. Existing pathwise test data generators proceed by selecting program paths that satisfy the selected criterion and then generating program inputs for these paths. One of the problems with this approach is that unfeasible paths are often selected; as a result, significant computational effort can be wasted in analysing those paths. In this paper, an approach to test data generation, referred to as a dynamic approach for test data generation, is presented. In this approach, the path selection stage is eliminated. Test data are derived based on the actual execution of the program under test and function minimization methods. The approach starts by executing a program for an arbitrary program input. During program execution for each executed branch, a search procedure decides whether the execution should continue through the current branch or an alternative branch should be taken. If an undesirable execution flow is observed at the current branch, then a real‐valued function is associated with this branch, and function minimization search algorithms are used to locate values of input variables automatically, which will change the flow of execution at this branch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call