Abstract
In order to reveal the mechanism of water wheel chaotic rotation, the Mechanical Mechanism and energy conversion of water wheel chaotic rotation are studied by the method of moment analysis. The mathematical model of the Malkus water wheel rotation is transformed into Kolmogorov system. Based on the different coupling modes of inertia moment, internal moment, dissipation moment and external moment, the main influencing factors and internal mechanical mechanism of the Malkus water wheel chaotic rotation are analyzed and discussed by using the method of theoretical analysis and numerical simulation. The conversion among Hamiltonian energy, kinetic energy and potential energy is investigated. The relationship between the energies and the Rayleigh number is discussed. The main factors affecting chaotic rotation are internal energy, kinetic energy and Hamiltonian energy. Through analysis and simulation, it is found that the lack of torque mode can not make the system generate chaos, but the full torque mode can make the system produce chaos, at the same time, the system can produce chaos only when the dissipation and external force match, at this time the water wheel is in a chaotic rotating state. The Casimir function is introduced to analyze the system dynamics. The bound of chaotic attractor is obtained by the Casimir function. The Casimir function reflects the energy conversion and the distance between the orbit and the equilibria. These relationships are illustrated by numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.