Abstract

In the present study, the shear stress response and the dynamic mechanical properties of an electrorheological fluid are experimentally investigated for small/large shear strain amplitude at moderate range of frequencies and different field intensities. A new efficient constitutive model has also been proposed, which can accurately predict the measured experimental data. Compared with the Fourier transformation rheology, the proposed model requires less number of parameters in order to predict the stress response and the mechanical properties, including storage and loss moduli for different strain amplitudes, frequencies, and field intensities. This leads to simplify the parameter identification in order to predict the material response using the optimization methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.