Abstract

An electromagnetic rail launcher (ERL) is essentially a high-speed linear motor, which can accelerate projectiles from milligrams to several kilograms and the velocities of which can reach more than several kilometers per second. In this article, the dynamic electromechanical characteristics of an ERL with the cross-section of plane, convex, and concave rails under different conditions of frictional coefficient and channel cooling are investigated. The kinematic characteristics of armatures and the stress distribution of three types of rails are compared. The mathematical relation between the frictional coefficient, the sliding time, and the armature speed in an ERL with three types of rails is obtained. The equations for the frictional coefficient, the sliding time, and the displacement of armature in an ERL with three types of rails are obtained. Under the same frictional coefficient condition, the velocity and displacement of armature in an ERL with a convex rail are the largest. The peak stress in a plane rail during one shot period is the greatest. In light of obtaining a higher armature velocity and moderate stress in a rail, the ERL with convex rails is the best one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.