Abstract
AbstractThe rheology and dynamic mechanical properties of binary block copolymer blends consisting of a symmetrical triblock copolymer with thermoplastic elastomeric behavior (LN4) and an asymmetrical thermoplastic triblock copolymer (LN3) were investigated. TEM images of the blends show a systematic variation in the morphologies from worms (∼20–0 wt % LN3) to cylinders (∼60–30 wt % LN3) to lamellae (100–70 wt % LN3) as a function of LN3 content. DMA analysis has revealed that the increase in LN3 content leads to a decrease in miscibility between the PS end blocks and the S/B middle block. The frequency and temperature dependence of the storage modulus (G′), loss modulus (G″), and complex viscosity (|η*|) has been studied for LN4 (weakly segregated) and LN3 (strongly segregated) from their master curves. By comparing the rheological properties of these blend compositions at low‐frequency regime, it is observed that with the increase in LN3 content the shear modulus and complex viscosity increase. Blend compositions with 70–100 wt % of LN3 show nonterminal behavior at reduced frequencies due to the presence of highly ordered microdomains when compared to blends with ∼0–20 wt % of LN3 content. van Gurp–Palmen plots were constructed to observe the transition from liquid‐ to solid‐like behavior in the vicinity of order‐to‐disorder transition (ODT) temperature. ODT temperature increases as the thermoplastic LN3 content increases which are also confirmed by the Han plots. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 329–343, 2008
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part B: Polymer Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.