Abstract

AbstractThe influence of the morphology on the mechanical properties of binary styrene–butadiene (SB) triblock copolymer blends of a thermoplastic block copolymer and a thermoplastic elastomer (TPE) with different molecular architectures was studied with bulk samples prepared from toluene. Both block copolymers contained SB random copolymer middle blocks, that is, the block sequence S–SB–S. The two miscible triblock copolymers were combined to create a TPE with increased tensile strength without a change in their elasticity. The changes in the equilibrium morphology of the miscible triblock copolymer blends as a function of the TPE content (lamellae, bicontinuous morphology, hexagonal cylinders, and worms) resulted in a novel morphology–property correlation: (1) the strain at break and Young's modulus of blends with about 20 wt % TPE were larger than those of the pure thermoplastic triblock copolymer; (2) at the transition from bicontinuous structures to hexagonal structures (∼35 wt % TPE), a change in the mechanical properties from thermoplastic to elastomeric was observed; and (3) in the full range of wormlike and hexagonal morphology (60–100 wt % TPE), elastomeric properties were observed, the strength greatly increasing and high‐strength elastomers resulting. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 429–438, 2005

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call