Abstract

AbstractIn this research, we have employed scanning capacitance microscopy (SCM) to image 2D carrier profiles of a MEMS device. Multiple device states are exercised and examined for changes in carrier response as a function of applied bias. First, experimental and simulated dopant profiles of the source and drain pn junctions were measured with device contacts grounded. Their comparison revealed good agreement. Scanning capacitance microscopy was then used to image changes in carrier distribution within the channel of the device while independent bias voltages were applied to the source, gate, drain, and well regions. Device operation was confirmed by simultaneously measuring the drain current. The SCM image contrast directly beneath the gate was observed to change as a function of applied gate bias voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.