Abstract

Investigation of the dynamic magma movement beneath the volcanos could provide critical information about the mechanism of volcanic eruption and therefore enhance the accuracy of eruption forecast.  Axial Seamount is an active submarine volcano located at the intersection of the Juan de Fuca Ridge and the Cobb hotspot.  Through its submarine surveillance network of Ocean Observatories Initiative (OOI), we observed magmatic activities that occurred before and during its latest eruption on April 24, 2015, as well as the following unrest events from the temporal variations of shear-wave velocity beneath Axial Seamount. In this study, we applied the Rayleigh-wave admittance method, which uses the frequency-domain transfer function between seismic displacement and water pressure, to invert for shear-wave velocity changes beneath the submarine seismic stations.  The results illustrated that a large magma upwelling event happened beneath the AXEC2 (southeastern caldera of Axial Seamount) several weeks prior to its 2015 eruption, implying the magma movement through a pathway near the southeastern caldera and possibly triggered the subsequent eruption.  However, another magma upwelling event beneath the AXID1 station (southern caldera) between December 2016 and June 2017 occurred without triggering any noticeable eruption event. These magmatic activities demonstrate that the eruption of Axial Seamount is controlled by a complicated magma plumbing system.  The eruption probably depends on not only the magma influx but also the status of the plumbing system and the overlying crustal layer.  With the Rayleigh-wave admittance method and the real-time data from the OOI network, we can continuously monitor the status of Axial Seamount and provide more information for the next eruption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.