Abstract

We investigated the relationship between intramuscular adipose tissue (IntraMAT) and muscle stiffness (passive and mechanical) and lengthening in young individuals, hypothesizing that (1) passive muscle stiffness is negatively correlated with the IntraMAT content, and (2) the IntraMAT content is negatively correlated with mechanical changes in muscle stiffness and fascicle length during passive dorsiflexion. Twenty men and women (20.3 ± 1.3years) participated in this study. Axial T1-weighted magnetic resonance imaging was performed at the thickest point of the medial gastrocnemius (MG) to measure the IntraMAT cross-sectional area (CSA) and muscle tissue CSA (units; cm2). The shear wave velocity (SWV) and fascicle length at the three ankle joint angles, namely 15° with plantarflexion (PF15), 0° with neutral position (NP), and 15° with dorsiflexion (DF15), were measured as parameters of muscle stiffness (unit; m/s) and lengthening (unit; cm) using ultrasound shear wave elastography and B-mode imaging. We further calculated the changes in SWV and fascicle length from PF15 to NP and from NP to DF15 as mechanical muscle stiffness and lengthening, respectively. There was a relationship between IntraMAT CSA and absolute SWV at DF15 (r = -0.47, P < 0.05). Further, a relationship was observed between IntraMAT CSA and change in SWV and fascicle length from NP to DF15 (r = -0.47 and r = 0.59, P < 0.05); whereas no relationship was observed between changes in fascicle length and muscle SWV (r = -0.23, P = 0.33). These results may indicate biomechanical and/or physiological associations between IntraMAT CSA and passive muscle stiffness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.