Abstract

Energy Packet Networks (EPNs) model the interaction between renewable sources generating energy following a random process and communication devices that consume energy. This network is formed by cells and, in each cell, there is a queue that handles energy packets and another queue that handles data packets. We assume Poisson arrivals of energy packets and of data packets to all the cells and exponential service times. We consider an EPN model with a dynamic load balancing where a cell without data packets can poll other cells to migrate jobs. This migration can only take place when there is enough energy in both interacting cells, in which case a batch of data packets is transferred and the required energy is consumed (i.e. it disappears). We consider that data packet also consume energy to be routed to the next station. Our main result shows that the steady-state distribution of jobs in the queues admits a product form solution provided that a stable solution of a fixed point equation exists. We prove sufficient conditions for irreducibility. Under these conditions and when the fixed point equation has a solution, the Markov chain is ergodic. We also provide sufficient conditions for the existence of a solution of the fixed point equation. We then focus on layered networks and we study the polling rates that must be set to achieve a fair load balancing, i.e., such that, in the same layer, the load of the queues handling data packets is the same. Our numerical experiments illustrate that dynamic load balancing satisfies several interesting properties such as performance improvement or fair load balancing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call