Abstract
The phase noise characteristics and laser stabilization time of a tunable laser under both static and fast switching operation is characterized using a dynamic linewidth measurement technique which employs a digital intradyne coherent receiver. The measurement technique utilizes a time domain frequency estimator to characterize the laser phase noise and also analyses the separate noise contributions to the overall laser linewidth. The performance of the measurement technique is validated using a phase noise emulator and a low linewidth (10 kHz) external cavity laser. The dynamic stabilization time, in terms of instantaneous frequency and linewidth, of a fast switching tunable DSDBR laser is subsequently investigated and we demonstrate that a minimum linewidth for a DSDBR laser can be realized within 50 ns of a wavelength switching event in a 5-channel 50 GHz spaced WDM system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.