Abstract

In pursuit of accurate and fast trajectory tracking of power converters, an explicit model is commonly used in the finite control-set model predictive control (FCS-MPC) framework to predict precise behaviors of controlled variables. In reality, however, the model mismatch is inevitable, which causes the inherent challenges of parameter sensitivity and model uncertainties of the FCS-MPC method. This article proposes a dynamic-linearization-based predictive control architecture to circumvent such model dependence while keeping the attractive features of the conventional FCS-MPC method. By integrating the data-driven feature of the dynamic-linearization approach, the detailed model used in the FCS-MPC controller is replaced by a virtual equivalent data model, creating a data-driven predictive control architecture. The suggested method selects optimal control action solely based on the input-output data, exhibiting strong rejection against parameter variations whilst inheriting the distinctive property of the conventional FCS-MPC method. Finally, the proposed design is validated through comparative simulation and experimental results on a three-level neutral-point-clamped inverter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.