Abstract

Attentional orienting can be modulated by stimulus-driven bottom-up as well as task-dependent top-down processes. In a recent study we investigated the interaction of both processes in a manual stimulus-response compatibility task. Whereas the intraparietal sulcus (IPS) and the dorsal premotor cortex (dPMC) were involved in orienting towards the stimulus side facilitating congruent motor responses, the right temporoparietal junction (TPJ), right dorsolateral prefrontal cortex (DLPFC) as well as the preSMA sustained top-down control processes involved in voluntary reorienting. Here we used dynamic causal modelling to investigate the contributions and task-dependent interactions between these regions. Thirty-six models were tested, all of which included bilateral IPS, dPMC and primary motor cortex (M1) as a network transforming visual input into motor output as well as the right TPJ, right DLPFC and the preSMA as task-dependent top-down regions influencing the coupling within the dorsal network. Our data showed the right temporoparietal junction to play a mediating role during attentional reorienting processes by modulating the inter-hemispheric balance between both IPS. Analysis of connection strength supported the proposed role of the preSMA in controlling motor responses promoting or suppressing activity in primary motor cortex. As the results did not show a clear tendency towards a role of the right DLPFC, we propose this region, against the usual interpretation of an inhibitory influence in stimulus-response compatibility tasks, to subserve generic monitoring processes. Our DCM study hence provides evidence for context-dependent top-down control of right TPJ and DLPFC as well as the preSMA in stimulus-response compatibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.