Abstract

Recently, the field of functional brain connectivity has shifted its attention on studying how functional connectivity (FC) between remote regions changes over time. It is becoming increasingly evident that the human "connectome" is a dynamical entity whose variations are effected over very short timescales and reflect crucial mechanisms which underline the physiological functioning of the brain. In this study, we employ ad-hoc statistical and surrogate data generation methods to quantify whether and which brain networks displayed dynamic behaviors in a very large sample of healthy subjects provided by the Human Connectome Project (HCP). Our findings provided evidences that there are specific pairs of networks and specific networks within the healthy brain that are more likely to display dynamic behaviors. This new set of findings supports the notion that studying the time-variant connectivity in the brain could reveal useful and important properties about brain functioning in health and disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.