Abstract

The study of vibration and dynamic instability behaviour of laminated composite plates subjected to partially distributed non-conservative follower forces is presented by using the finite element technique. The first-order shear deformation theory is used to model the plate, considering the effects of shear deformation and rotary inertia. The modal transformation technique is employed to the resulting equilibrium equation for subsequent analysis. Structural damping is introduced into the system in terms of equivalent viscous damping to study the significance of damping on stability characteristics. The effects of load width, boundary condition, aspect ratio, ply orientation, direction control of the load and damping parameters are considered for the stability behaviour of the plates. The results show that under follower loading, the system is susceptible to instability due to flutter alone or due to both flutter and divergence, depending on system parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call