Abstract

The vibration and dynamic instability characteristics of doubly curved panels subjected to partially distributed non-conservative follower load are studied using finite element analysis. The first-order shear deformation theory is used to model the doubly curved panels, considering the effects of shear deformation and rotary inertia. The theory used is the extension of dynamic, shear deformable theory according to Sander's first approximation for doubly curved shells, which can be reduced to Love's and Donnell's theories by means of tracers. The modal transformation technique is applied to the resulting equilibrium equation for subsequent analysis. Structural damping is introduced into the system in terms of equivalent viscous damping. The effects of load bandwidth, boundary condition, load direction control parameter and damping are considered for the stability behaviour of the panels. The results show that the load bandwidth has a significant effect on the dynamic instability characteristics of the panels. The analysis also shows that, under follower loading, the system is susceptible to instability due to flutter alone or due to both flutter and divergence, depending upon the system parameters. Structural damping significantly affects the critical flutter loads of the panels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.