Abstract
One of the principal motivations for the new paradigm in reasoning was a reaction to the old (binary truth functional) paradigm's inability to deal with everyday non-monotonic inference. Within the new paradigm the problem of non-monotonicity is recast as the problem of belief revision or dynamic inference; that is, what happens when the probability distribution over which inferences are made changes from Pr0 to Pr1. Non-monotonicity arises when the new distribution, conditional on new information, I, changes the relevant probabilities, so that Pr0(x) ≠ Pr1(x), i.e., Pr0(x) ≠ Pr0(x|I). In this paper we first introduce the general problem of dynamic inference. We then consider the specific problems for dynamic conditional inference, in particular for modus tollens (MT). We then turn to possible reactions to these problems, looking at Oaksford and Chater's (2007) learning approach and causal Bayes nets. We conclude that most of the recent research on the non-monotonic effects observed in casual conditional inference and the suppression effect require a dynamic approach. However, the rational constraints on the transition from Pr0 to Pr1, when Pr0(x) ≠ Pr0(x|I), remain unclear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.