Abstract
Traumatic brain injury (TBI) is one of the most traumatizing and poses serious health risks to people's bodies due to its unique pathophysiological characteristics. The investigations on the pathological mechanism and valid interventions of TBI have attracted widespread attention worldwide. With bio-mimic mechanic cues, the dynamic hydrogels with dynamic stiffness changes or reversible crosslinking have been suggested to construct the invitro disease models or novel therapeutic agents for TBI. However, there is a lack of clarification on the dynamic hydrogels currently reported and their biomedical applications on TBI. Our review starts with introducing the native mechanical characters and changes in TBI and then summarizes the common chemical strategies of the dynamic hydrogels with dynamically tunable stiffness and reversible networks for invitro modeling and therapy. Finally, we prospect the future development of dynamic hydrogels in the mechanical modeling of TBI, providing new mechanical insights for TBI and guidance for tailored brain-targeted biomaterials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have