Abstract
We discuss how to construct a tight binding model Hamiltonan for the simplest possible solid, composed of hydrogen-like atoms. A single orbital per atom is not sufficient because the on-site electron-electron repulsion mixes in higher energy orbitals. The essential physics is captured by a dynamic Hubbard model with one electronic orbital and an auxiliary spin degree of freedom per site. We point out that this physics can lead to a substantial shift in the position and width of electronic energy bands relative to what is predicted by conventional band structure calculations.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have