Abstract
In this article we examine an evolution problem, which describes the dynamic contact of a viscoelastic body and a foundation. The contact is modeled by a general normal damped response condition and a friction law, which are nonmonotone, possibly multivalued and have the subdifferential form. First we derive a formulation of the model in the form of a multidimensional hemivariational inequality. Then we establish a priori estimates and we prove the existence of weak solutions by using a surjectivity result for pseudomonotone operators. Finally, we deliver conditions under which the solution of the hemivariational inequality is unique.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have