Abstract

Author SummaryUnderstanding the world and making optimal decisions requires using the most relevant information while at the same time ignoring irrelevant information, a psychological phenomenon known as “cognitive control.” How the same population of neurons deals with multiple streams of information simultaneously is poorly understood. In this study, we investigated the underlying neural mechanisms of cognitive control in a network of hippocampal neurons known to represent space. We implanted electrodes into the hippocampus of rats and recorded the action potential discharge of many neurons at the same time. The recordings were made while rats that were foraging on a rotating disk used cognitive control to coordinate spatial information from different spatial frames. We found that at each moment, discharge preferentially represented location in one or the other spatial frame. Importantly, we were able to influence the behavioral relevance of these spatial frames, and we found that discharge alternated between signaling location in one or the other frames in accord with its current behavioral importance. The timing of when these neurons were active was also related to their function, such that neurons collectively represented locations in the same spatial frame if they were coactive within a few tens of milliseconds to seconds. We conclude that cognitive control is mediated by a dynamic functional grouping. Neural activity distributed across many neurons transiently organizes into functional groups by coactive firing that represents a coherent stream of information.

Highlights

  • At every moment the mammalian brain is confronted with a multitude of sensory stimuli having varying degrees of behavioral relevance and must select from multiple potential responses the ones that are appropriate for the circumstances

  • We investigated the underlying neural mechanisms of cognitive control in a network of hippocampal neurons known to represent space

  • The recordings were made while rats that were foraging on a rotating disk used cognitive control to coordinate spatial information from different spatial frames

Read more

Summary

Introduction

At every moment the mammalian brain is confronted with a multitude of sensory stimuli having varying degrees of behavioral relevance and must select from multiple potential responses the ones that are appropriate for the circumstances. We demonstrated that hippocampus is involved in cognitive control when a rat has to organize its behavior according to distinct representations of two concurrent frameworks of spatial information [4]. These findings, together with the well-characterized spatial discharge correlates of hippocampal neurons (place cells), put us in a position to investigate the neural mechanisms of cognitive control in hippocampus. To understand how the brain coordinates multiple streams of spatial information, we investigated how two distinct, concurrently relevant spatial representations are coordinated in hippocampal discharge

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.