Abstract

In this paper, a dynamic fuzzy energy state based AODV (DFES-AODV) routing protocol for Mobile Ad-hoc NETworks (MANETs) is presented. In DFES-AODV route discovery phase, each node uses a Mamdani fuzzy logic system (FLS) to decide its Route REQuests (RREQs) forwarding probability. The FLS inputs are residual battery level and energy drain rate of mobile node. Unlike previous related-works, membership function of residual energy input is made dynamic. Also, a zero-order Takagi Sugeno FLS with the same inputs is used as a means of generalization for state-space in SARSA-AODV a reinforcement learning based energy-aware routing protocol. The simulation study confirms that using a dynamic fuzzy system ensures more energy efficiency in comparison to its static counterpart. Moreover, DFES-AODV exhibits similar performance to SARSA-AODV and its fuzzy extension FSARSA-AODV. Therefore, the use of dynamic fuzzy logic for adaptive routing in MANETs is recommended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.