Abstract

We examine the dynamic failure of ice-templated freeze-cast alumina scaffolds that are being considered as biomimetic hierarchical structures. Three porosities of alumina freeze-cast structures were fabricated, and a systematic variation in microstructural properties such as lamellar width and thickness was observed with changing porosity. Dynamic impact tests were performed in a light-gas gun to examine the failure properties of these materials under high strain-rate loading. Nearly complete delamination was observed following impact, along with characteristic cracking across the lamellar width. Average fragment size decreases with increasing porosity, and a theoretical model was developed to explain this behavior based on microstructural changes. Using an energy balance between kinetic, strain, and surface energies within a single lamella, we are able to accurately predict the characteristic fragment size using only standard material properties of bulk alumina.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call