Abstract

A simple setup for dynamic air sampling using a solid-phase microextraction (SPME) device designed for use in the field was evaluated for organophosphate triester vapour under both equilibrium and non-equilibrium conditions. The effects of varying the applied airflows in the sampling device were evaluated in order to optimise the system with respect to the Reynolds number and magnitude of the boundary layer that developed near the surface. Further, the storage stability of the analytes was studied for both capped and uncapped 100-microm PDMS fibres. Organophosphate triesters are utilized on large scales as flame-retardants and/or plasticizers, for instance in upholstered furniture. In indoor working environments these compounds have become common components in the surrounding air. Measurements were performed in a recently furnished working environment and the concentration of tris(2-choropropyl) phosphate was found to be 7 microg m(-3).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.