Abstract

Epilepsy surgery remains underutilized, in part because non-invasive methods of potential seizure foci localization are inadequate. We used high-resolution, parametric quantification from dynamic 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography (dFDG-PET) imaging to locate hypometabolic foci in patients whose standard clinical static PET images were normal. We obtained dFDG-PET brain images with simultaneous EEG in a one-hour acquisition on seven patients with no MRI evidence of focal epilepsy to record uptake and focal radiation decay. Images were attenuation- and motion-corrected and co-registered with high-resolution T1-weighted patient MRI and segmented into 18 regions of interest (ROI) per hemisphere. Tracer uptake was calibrated with a model corrected blood input function with partial volume (PV) corrections to generate tracer parametric maps compared between mean radiation values between hemispheres with z-scores. We identified ROI with the lowest negative z scores (<−1.65 SD) as hypometabolic. Dynamic 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography ( found focal regions of altered metabolism in all cases in which standard clinical FDG-PET found no abnormalities. This pilot study of dynamic FDG-PET suggests that further research is merited to evaluate whether glucose dynamics offer improved clinical utility for localization of epileptic foci over standard static techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call