Abstract

Abstract In this paper, we investigate an evolutionary approach to solve the multi-objective dynamic facility layout problem (FLP) under uncertainty that presents the layout as a set of Pareto-optimal solutions. Research examining the dynamic FLP usually assumes that data for each time period are deterministic and known with certainty. However, production uncertainty is one of the most challenging aspects in today’s manufacturing environments. Researchers have only recently modeled FLPs with uncertainty. Unfortunately, most solution methodologies developed to date for both static and dynamic FLPs under uncertainty focus on optimizing just a single objective. To the best of our knowledge, the use of Pareto-optimality in multi-objective dynamic FLPs under uncertainty has not yet been studied. In addition, the approach proposed in this paper is tested using a backward pass heuristic to determine its effectiveness in optimizing multiple objectives. Results show that our approach is an efficient evolutionary dynamic FLP approach to optimize multiple objectives simultaneously under uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.