Abstract

Abstract Foreground segmentation (FS) plays a fundamental and important role in computer vision, but it remains a challenging task in dynamic backgrounds. The supervised method has achieved good results, but the generalization ability needs to be improved. To address this challenge and improve the performance of FS in dynamic scenarios, a simple yet effective method has been proposed that leverages superpixel features and a one-dimensional convolution neural network (1D-CNN) named SPF-CNN. SPF-CNN involves several steps. First, the coined Iterated Robust CUR (IRCUR) is utilized to obtain candidate foregrounds for an image sequence. Simultaneously, the image sequence is segmented using simple linear iterative clustering. Next, the proposed feature extraction approach is applied to the candidate matrix region corresponding to the superpixel block. Finally, the 1D-CNN is trained using the obtained superpixel features. Experimental results demonstrate the effectiveness of SPF-CNN, which also exhibits strong generalization capabilities. The average F1-score reaches 0.83.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.