Abstract

The consensus problem for a multi-agent system (MAS) is investigated in this paper via a sliding mode control mechanism subject to stochastic DoS attack, which may occur on each transmission channel independently and randomly according to the Bernoulli distribution. A distributed dynamic event-triggered strategy is implemented on the communication path among agents, where dynamic parameters are introduced to adjust the threshold of event-triggered condition. After that, a distributed sliding mode controller is proposed for ensuring the stochastic consensus of the MAS. Meantime, a minimization problem is solved to obtain the correct controller gain matrix. At last, a numerical example is shown to demonstrate the presented results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.