Abstract
Servomechanisms and motion stages often encounter many mechanical transmission problems such as friction, backlash, and structural resonance, as well as other factors such as system nonlinearity, servo lags, and unknown disturbances. In contour following applications, these problems are the main causes of deterioration in contour following accuracy. As a result, the issue of dealing with the above problems so as to reduce tracking error and contour error is crucial. The Dynamic Fast Nonsingular Terminal Sliding Mode Control (DFNTSMC) scheme proposed in this paper combines the advantages of Fast Nonsingular Terminal Sliding Mode Control (FNTSMC) and Dynamic PID Sliding Mode Control (DSMC) while avoiding their drawbacks. The proposed DFNTSMC has attractive features such as improvement of contour following accuracy, chattering effect suppression, enhancement of robustness, and finite time convergence. The convergence of the proposed DFNTSMC is proved based on Barbalat’s lemma. Several contour following experiments are performed to assess the performance of the proposed DFNTSMC. Experimental results suggest that the proposed DFNTSMC outperforms both FNTSMC and DSMC, two control schemes also tested in the contour following experiment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.