Abstract

The consensus problem for a multi-agent system (MAS) is investigated in this paper via a sliding mode control mechanism subject to stochastic DoS attack, which may occur on each transmission channel independently and randomly according to the Bernoulli distribution. A distributed dynamic event-triggered strategy is implemented on the communication path among agents, where dynamic parameters are introduced to adjust the threshold of event-triggered condition. After that, a distributed sliding mode controller is proposed for ensuring the stochastic consensus of the MAS. Meantime, a minimization problem is solved to obtain the correct controller gain matrix. At last, a numerical example is shown to demonstrate the presented results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call