Abstract

This paper presents a new procedure specifically aimed at providing a dynamical detection of the oscillations occurring in long-term heart-rate (HR) tracings. The procedure is based on a time-variant state-space modelling of the fourth-order cumulants of the HR signal. The state-space estimator was selected because of its demonstrated capability to distinguish between deterministic and stochastic components of the signal, while the fourth-order cumulants of the signal were used as input of the model to further reduce adverse effects of coloured, white and l/f Gaussian noise possibly present in the input data. The procedure was tested by the analysis of simulated signals and its performance was compared with the results obtained by state-space modelling applied directly on the test signals (instead of on the fourth-order cumulants of the signals) and by the more traditional auto-regressive modelling. The comparison has shown a clear superiority of the proposed procedure over the other techniques in discriminating deterministic oscillations from coloured noise. Finally, the applicability of the procedure to biological data was verified by analysing five experimental HR tracings recorded in normal subjects during laboratory and daily life conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.