Abstract

Surveillance, safety and security of evolving systems are a challenge to prevent accident. The dynamic detection of a hypothetical and theoretical blockage incident in the Phenix nuclear reactor is investigated. Such an incident is characterized by abnormal temperature rises in the neighbourhood of the concerned reactor core assembly. The dataset is the output temperature map of the reactor, it is provided by the Atomic Energy and Alternative Energies Commission (CEA). A real time approach is proposed, based on a sliding temporal window, it is divided into two steps. The first one behaves like a sieve, its function is to detect simultaneous temperature evolutions in a close neighbourhood which may induce a potential incident. When such evolutions are detected, the second step computes the temperature contrast between each assembly having these evolutions and its neighbourhood. This method permits to monitor the system evolution in real time while only few observations are required. Results are validated on various noisy realistic simulated perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.